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Abstract. We present a dynamical simulated annealing approach to the self-consistent 
calculation of the electronic structure of liquid metals. Models for the atomic structure 
are generated using a classical microcanonical molecular dynamics simulation based on 
interatomic potentials derived from pseudopotential perturbation theory. The electronic 
structure is calculated by numerically integrating the dynamical simulated annealing 
equations of motion for the electron states at fixed atomic coordinates, using the same 
pseudopotential. Detailed results are presented for liquid AI, Si, Ge, As and Te. As far as 
experimental information is available, the calculated electronic density of states is in good 
agreement with the photoemission spectra. The dynamical simulated annealing calculations 
are compared with electronic structure calculations based on minimal basis sets such as 
the linear-muffin-tin-orbital method. We find that at comparable accuracy, the dynamical 
simulated annealing approach reduces the computational effort for 64-atom models by about 
a factor of ten. Compared to a full density-functional molecular-dynamics approach the 
present method achieves self-consistency between the atomic and the electronic structure 
only at the level of a linear-response approach. For good liquid metals such as Si the result 
of the present approach based on a combination of perturbation and ab initio methods 
leads to results equivalent to those based on full density-functional molecular-dynamics 
calculations, but it requires only about 1% of the computational effort. For molten materials 
close to a semiconductor/semimetal transition (liquid As and Te) covalent bonding effects 
however are expected to have a non-negligible influence on the electronic density of states 
at the Fermi level. Here the combination of the present approach with full density-functional 
MD calculations should help to get accurate results at a much lower computational effort. 

1. Introduction 

The self-consistent calculation of the electronic structure of topologically disordered 
(liquid or amorphous) materials remains a considerable challenge. The problem is that 
in order to account for the effect of the local fluctuations in the atomic arrangement on 
the electronic structure self-consistency should be achieved locally, at every atomic site. 
To date the only technique which is able to achieve self-consistency at a local level is the 
‘supercell’ technique [l-31. The electronic structure is calculated for atoms arranged in 
a periodically repeated ‘supercell’, using standard k-space techniques. The coordinates 
of the atoms within this cell are generated via molecular dynamics or Monte Carlo 
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calculations, based either on effective volume and pair forces derived from pseu- 
dopotential perturbation theory where it is applicable or on empirical pair potentials. A 
configuration average may be taken by repeating the electronic structure calculations 
for independent configurations along the simulated phase-space trajectory. Evidently 
this requires a very efficient technique for calculating the electronic states. Standard 
techniques for self-consistent electronic structure calculations proceeding by repeated 
diagonalisation of the Hamiltonian matrix become inefficient when the number of 
degrees of freedom (i.e. essentially the number of basis states necessary to represent the 
electronic wavefunctions in the cell) is large. A number of such calculations for liquid 
and amorphous metals and alloys have been performed using minimal-basis-set methods 
such as the linear-muffin-tin-orbital (LMTO) method in the atomic-sphere-approximation 
(ASA) [4], but these represent a major computational effort [1-31. 

Recently an entirely new development was initiated by a seminal paper by Car and 
Parrinello [ 5 ] ,  Under the name of density-functional molecular-dynamics this paper 
introduced three important new ideas: (i) The solution of the one-electron Schrodinger 
equation can be performed in various ways. Car and Parrinello adopted a global mini- 
misation of the total energy via a 'dynamical simulated annealing' (DSA) procedure based 
on a molecular dynamics algorithm. Any other efficient minimisation technique could 
be used as well. (ii) The use of a mixed real and reciprocal space representation leads to 
a very efficient scaling of the computational effort with the number of atoms in the 
supercell, or equivalently with the number N of basis functions. The basic step in any 
iterative matrix diagonalisation is the multiplication of some approximate eigenfunction 
I)J by a Hamiltonian H = T + V .  Normally such an operation takes N 2  steps. However 
multiplication with a diagonal matrix takes only Nsteps. If I)J is expanded in plane waves 
the operation TV can be performed as a diagonal multiplication in reciprocal space. The 
same applies for a local potential V if q is calculated on a real-space grid and the 
operation V .  y j  is performed in real space. The rate-limiting factor is then the fast Fourier 
transform between the two representations which takes N log N steps. The challenge is 
to achieve a similar performance for non-local potentials. The dynamical simulated 
annealing approach based on (i) and (ii) allows to use very large plane-wave basis sets 
of the order of several lo3 to lo4 plane waves in electronic structure calculations. (iii) 
The third point is that convergence in the ionic equations of motion (EOM) and in the 
one-electron wave equations may be approached simultaneously. The DSA equations of 
motion for the electronic degrees of freedom and the Newtonian equations of motion 
of the ions (with the forces on the ions given by the Hellmann-Feynman theorem) 
together form the density-functional molecular-dynamics (DF MD) equations of motion 
of the coupled electron-ion system. The solution of these equations allows for a self- 
consistent calculation of the atomic and the electronic structure. However, even by 
present-day standards such a calculation represent a very large computational effort and 
allows to explore only a very small region of phase space, typical simulations runs being 
limited to about s. 

In the present work we have exploited the DSA concept (i.e. (i) and (ii)) to perform 
accurate and efficient calculations of the electronic structure for a number of liquid 
elements, ranging from nearly-free-electron metals such as A1 to liquid semimetals such 
as As and Te. The atomic configurations serving as the basis of these calculations have 
been generated using conventional molecular dynamics simulations based on volume- 
and pair forces derived from second-order pseudopotential perturbation theory. These 
simulations can be extended over much longer times, typically lO-''s. The same local 
pseudopotentials are used in the DSA calculations of the electronic structure and in the 
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molecular dynamics calculations of the atomic structure. Compared to a full density- 
functional molecular-dynamics calculation self-consistency of the atomic and the elec- 
tronic structures is achieved only at the level of a linear response approach, but the 
comparison of the calculated atomic correlation functions and of the electronic density 
of states with experiment and with the available DF MD results show that very realistic 
results can be obtained in this way.The computer-time necessary for the calculation is 
comparable to that for a very few time steps of the DF MD, i.e. only a fraction of to 
lo-' of the computer-time for a fully converged DF MD calculation. We also compare our 
results with LMTo-supercell calculations and find a comparable accuracy at about one 
tenth of the computational effort. 

2. Dynamical simulated annealing 

Car and Parrinello [5] write the DSA equation of motion for the electronic state qnk as 

where E is the total energy, A!n, are the Lagrangian multipliers for the constraints of 
orthogonality and normalisation, and p is a fictitious mass. Using a plane wave rep- 
resentation for the ynk and removing the Lagrangian factors for the orthogonality 
constraint, the equation of motion (EOM) for the coefficient of the plane wave 
exp[i(k + G)r]  becomes (in atomic units, h2/2m = 1, At,, = A n k )  

p c n , k + G  = - [ ( k  + GI2 + VG=O - I Z n k ] C n . k + G  - ]c VG-G'Cn,k+G' ( 2 )  
G#G' 

where V stands for the one-electron potential calculated in the density-functional 
approximation. The wavefunctions are orthogonalised after each integration step via a 
Gram-Schmidt procedure. Car and Parrinello used a second-order Verlet algorithm to 
integrate the EOM. Payne et a1 [6,7] realised that because (2) is an oscillator equation 
with frequency 6 = { [ (k  + G)2 + V,,, - Ank]/p}'I2 it can be integrated analytically. The 
analytic integration allows us to use a larger time step and gives faster convergence. 

Calculations for metals entail special complications because of the Fermi surface. 
Crossing of levels close to the Fermi surface could lead to discontinuous changes in the 
Cn,k+G and to instabilities in the EOM. We have adopted the following procedure to 
treat metals. The electronic eigenvalues &,,kare Gaussian-broadened. The superposition 
of the Gaussians defines a smooth electronic density of states (DOS) which is used for the 
determination of the Fermi level EF. Integration of the Gaussians up to E ,  defines an 
occupancy factor w(EF - for each electron state which determines the weight with 
which this state contributes to the new charge density. In any case this procedure led to 
a fast convergence of the EOM. 

The calculation of the charge density, total energy, DOS etc requires a sampling of 
the Brillouin zone of the 'supercell'. The calculations of Car and Parrinello [8] on a 54- 
atom supercell for liquid and amorphous Si use the r point (k = 0) and result in a rather 
strongly structured density of states. Conventional LMTo-supercell calculations [l-31 
have demonstrated that a more extended Brillouin-zone sampling (up to ten k-points on 
a regular grid in the irreducible part of the Brillouin zone of a 64-atom cell) or the use 
of the Chadi-Cohen special points [9] lead to a smoother and more accurate DOS. The 
use of the rpoint  (or of any other single high-symmetrypoint) leads to a rather inaccurate 
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Table 1. Input data for the molecular dynamics calculation of the atomic structure and 
the dynamical simulated annealing calculation of the electronic structure: temperature T ,  
number density n ,  and pseudopotential core radius R,. 

T (K) n (A-3) Rc (4 
A1 965 0.05298 0.582 
Si 1773 0.05553 0.520 
Ge 1250 0.044 30 0.529 
As 1100 0.039 00 0.534 
Te 723 0.027 10 0.545 

result for the DOS because even for these rather large cells the r-point eigenvalues still 
show a rather high degree of near-degeneracy. The present calculations are based on a 
single Chadi-Cohen point ( k  = (0.25,0.25,0.25)(2n/a) for a cubic cell with a cube edge 
a )  which gives a better representation of the DOS than the r point. 

3. Electronic structure of liquid metals 

3.1. Atomic structure 

In the following we describe in detail our calculations for liquid Al, Si, Ge, As and Te. 
The trend in the liquid structures of these elements has been studied recently in a series 
of publications [3,10-131. It has been shown that the transition from a close-packed, 
hard-sphere-like structure in 1-A1 to more open structures in the liquid elements from 
groups IV to VI of the Periodic Table may be understood in terms of the interplay of 
volume and pair forces and of the systematic variation of the pair potentials with electron 
density and pseudopotential. The variation of the pair potentials across the Periodic 
Table is well described even by calculations based on a simple empty-core pseu- 
dopotential, with the core radius R, fitted to the electronic properties of the crystalline 
elements [13] (see Table XVIII in Cohen and Heine [14]). We remark at once that all 
our results are stable with respect to small changes ( + 5 % )  of R,. The Ichimaru-Utsumi 
[ 151 form for the local-field corrections to the electron-gas screening function has been 
used in the calculation of the pair potentials. The input data for our calculations are 
summarised in table 1. 

The atomic structure of the liquid has been calculated using classical microcanonical 
molecular dynamics, using a fourth-order predictor-corrector algorithm for the inte- 
gration of the ionic EOM [lo,  161. Figure 1 shows the effective pair potential @(R) and 
the pair correlation functiong(R) for liquid Si. The experimentalg(R) is compared with: 
(a) the MD-ensemble average for a 512-atom model (80 independent configurations out 
of a molecular dynamics trajectory of 3200 time steps with At = 4 X s, i.e. t = 
1.28 x s), (b) the MD-ensemble average for a 64-atom model (800 independent 
configurations out of a simulation extending over 32000 time steps, t = 1.28 X s), 
and (c) the g(R) calculated for a single 64-atom configuration serving as the basis for 
the DsA-calculations of the electronic DOS. We find that the full MD-average leads to a 
very good agreement with experiment [17]. Differences between the 512-atom and the 
64-atom ensemble averages appear only for distance larger than the cube edge of the 
small cell ( R  > 10.5 A), provided that the reduced number of atoms can be compensated 
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Figure 1. Interatomic pair potential @(R)  and pair correlation function g(R)  for liquid silicon 
at T =  1170 K. The broken curve shows the pair potential, shifted by + l .  The full curve 
shows the pair correlation function calculated from an ensemble average for a 512-atom 
model, the dotted curve represents the result of a configuration average for a 64-atom model, 
and the histrogram the g(R) calculated for a single 64-configuration. The full dots give the 
experimental pair correlation function (after Gabathuler and Steeb 1171). Note that the 
results of the 512-atom and the 64-atom simulations differ significantly only for distances 
larger than the cube edge of the smaller cell (i.e. R > 10.5 A). 

by a more extended ensemble average. Even a single 64-atom represents the charac- 
teristic aspects of the structure of liquid Si surprisingly well. Note that the calculated 
g(R) is in very good agreement with the result of the DF MD calculations for 1-Si [8]. For 
a detailed discussion of the MD-simulations of 1-Ge, As, and Te see [3, 1&12]. For I-As 
the present results based on the pair potentials calculated using perturbation theory are 
again well confirmed by full DF MD simulations [ 181. Table 2summarises the most relevant 
structural information-note that the low coordination numbers and the characteristic 
bond-angles of these elements are well described. 

3.2. Electronic structure 

The integration of the DSA-EOM (2) for the electronic states was performed using the 
analytic method of Payne eta1 [6,7] for supercells containing 64 atoms. The energy cut- 
off determining the highest-energy plane-wave states was set at a minimum of 70 eV. 
Calculations for 1-A1 and I-Si using cut-off energies up to 160 eV showed that the form 
of the DOS is entirely unaffected by this relatively low cut-off value of 70 eV, the higher- 
energy plane-wave states merely lead to a small rigid shift of the DOS. The integration 
of the DSA-EOM was extended over 70 steps. After 50 steps the total energy is converged 
to five leading figures. 

Figure 2 shows the DOS calculated for the same configuration of liquid Ge, using the 
DSA in a plane-wave basis as described here, and using a conventional LMTO-ASA supercell 
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Table 2. Coordination number N c ,  interatomic distances R, for the first and second coor- 
dination shell, and position Om,, of the main peak in the bond-angle distribution function: 
comparison of molecular dynamics simulation and experiment. 

AI MD 10.9 2.69 4.89 1.82 
exp.' 10.5 2.71 4.95 1.83 

Si MD 6.7 2.52 5.50 2.18 
exp.8 6.4 2.45 5.50 2.24 

Ge MD 7.6 2.66 5 .75 2.16 
exp.c 6.5 2.65 5.73 2.16 

As MD 3.0 2.61 3.83 1.47 
exp.h 3.0 2.50 3.75 1.50 

Te MD 2.56 2.76 4.15 1.50 
exp.' 2.63 2.81 4.20 1.49 

58, 109 
60,90,120" 

60, 90b 
109.5' 

60, 90b 
109.5' 

94 
97d 

100 
102' 

a Bond angle in face-centred cubic AI. 
Liquid Si and Ge show very diffuse bond-angle distributions with two very broad peaks. 
Bond-angle in the diamond structure of Si and Ge. 
Bond-angle in the rhombohedral structure of crystalline As. 

e Bond-angle in the trigonal structure of crystalline Te. 
[251 
[17]. 
[19]. 

Ge 

- PW 

- --- LMTO 

€-EF i e V 1  

Figure 2. Comparison of the results of self-consistent calculations of the electronic density 
of states for a 64-atom configuration of liquid Ge, based on dynamical simulated annealing 
calculations in a plane-wave basis as described here (pw-full line) and based on linear-muffin- 
tin-orbital (LMTO) calculations in an atomic-sphere-approximation (dotted line, after [3] and 
P11). 

calculation [3,20] (based on ten k-points on a regular grid in the Brillouin zone). The 
somewhat more pronounced fluctuations in the DOS obtained by DSA are due mainly to 
the fact that a single special point does not quite as well as a sampling over ten k-points, 
but otherwise the agreement between the LMTO-ASA and the DSA results is certainly very 
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Figure 3. Electronic density of states for two independent 64-atom configurations of liquid 
A1 (dotted and broken lines) and configuration average. See text. 

encouraging. The important point is that for these 64-atom supercells the computer- 
time per k-point needed for the DSA calculations is about a factor of ten lower than for 
the LMTO calculations. The reduction of the computational effort will be even more 
important for for larger cells as the computer-time for the LMTO scales with N 3 ,  whereas 
for the DSA the scaling goes as N log N .  A certain drawback is the larger core memory 
required for the DSA calculations. 

In principle one should always take a configuration average over a sufficient number 
of independent configurations. Figure 3 compares the DOS for two independent con- 
figurations of liquid Al, taken at an interval of 1000 time steps (i.e. at a time interval of 
4 X s) along the MD trajectory. We find the differences in the DOS to be rather 
small, especially near the bottom of the band. But even close to the Fermi level where 
they are larger, the differences are still of the order of magnitude of the uncertainty 
introduced by the restricted Brillouin zone sampling (or equivalently, by the small 
number of atoms in the supercell). Therefore the following calculations have been 
restricted to a single representative atomic configuration. 

Figure 4 shows the electronic DOS for liquid Al, Si, Ge, As and Te. Only A1 and Si 
show the nearly-free-electron like DOS that is often assumed to be characteristic for all 
s,  p-bonded liquid metals. In Ge and As a deep pseudo-gap, and in 1-Te a real gap splits 
the valence band into a lower part containing exactly two electons per atom and an upper 
part that accommodates the remaining electrons. For 1-Si the present results are in good 
agreement with the D F M D  results of Car and Parrinello [8]  (but see the comments 
concerning the spikiness of the DF MD DOS). The NFE-form of the DOS for l-Al and the 
existence of a pseudo-gap in the DOS of 1-Ge are well confirmed by recent photoemission 
experiments [21] as is shown in figure 4. For 1-Te (where no spectroscopic data for the 
melt are available) the calculated DOS agrees well with the photoemission spectrum of 
crystalline Te [22 ,23 ]  (see figure 4), as suggested by the similarity in the local order in 
liquid and crystalline Te (see table 2 ) .  The fact that the lower part of the band contains 
exactly two electrons suggest that the band is a pure s band and that the upper part of 
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Figure 4. Electronic density of states for 
liquid AI, Si, Ge, As, and Te calculated by 
the dynamical simulated annealing 
approach (full lines). For AI and Ge the 
dotted lines show respectively the x-ray 
(XPS) and ultraviolet (UPS) photoemission 
spectra measured for the molten metal 
(after Indlekofer eral[22]) .  For Te we show 
for comparison the XPS spectrum of the 
crystalline material (after [23] and [24]). 

the is a p band. This is indeed confirmed by the angular-momentum decomposed DOS 
resulting from the LMTO ASA calculations [3,21]. The origin of the pseudo-gap is two- 
fold: (a) due to the lower coordination number the overlap between orbitals centred at 
neighbouring atoms is no longer large enough to promote the strong s, p hybridisation 
necessary for the formation of a NFE-like valence band. (b) The separation of s and p 
states is enhanced in the heavier elements by relativistic effects which tend to bind s 
electrons more strongly than p electrons. In liquid Ge a third point is important: the 4s 
electrons partially penetrate the rather extended 3d core, so that the 4s electrons see a 
more attractive ionic potential. In our approach the relativistic effects and the effect of 
the core-penetration are taken into account by adjusting the core-radius to the empirical 
pseudopotentials. 

The only open question concerns the DOS of 1-As and I-Te at the Fermi-level. The 
present results suggest a metallic DOS at EF. Crystalline As is a semimetal, crystalline Te 
a semiconductor with a very narrow band-gap. To decide whether covalent bonding 
effects not included in the pseudopotential perturbation calculation of the interatomic 
forces lead to the formation of a pseudo-gap at EF in the liquid will require a full DF MD 
calculation. If the entire calculation starting from some arbitrary configuration is done 
within the DF MD framework this calculation will be by nearly a factor of lo3 more time- 
consuming than the present calculation. Preliminary results suggest that if the DF MD 
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calculation is started from a configuration created in a classical simulation based on the 
effective pair potentials, a well converged result can be achieved at a much reduced 
effort. 

4. Conclusions 

To conclude: we have shown that dynamical simulated annealing (DSA) calculations of 
the electronic structure of liquid metals and semimetals are as accurate, but com- 
putationally much more efficient than conventional supercell techniques based on iter- 
ative matrix diagonalisation, Compared to a full density-functional molecular-dynamics 
calculation the present approach achieves self-consistency between the atomic and the 
electronic structures only at the level of a linear-response approach but allow for a much 
more extended sampling of phase space. The comparison of our results with the DF MD 
results of Car and Parrinello [8] for 1-Si and of Li et a1 [18] for 1-As and with the 
experimental data (diffraction data and photoelectron spectroscopy) suggests that for 
Al, Si, Ge and perhaps As this is not a very serious restriction. Only for 1-Te which is 
much closer to a semiconductor-semimetal transition a full calculation of the Hellmann- 
Feyman forces within a DF MD framework appears to be necessary. But even here the 
combination of the perturbation- and ab initio methods introduced here helps to define 
a reasonably realistic starting point for the DF MD simulations and to reduce the com- 
putational effort. 
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